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SURVEY OF A SECOND CLASS OF ORBITS
IN THE EARTH-MOON FIELD: XR = 1.00
By R. F. Hoelker

Electronics Research Center

SUMMARY

A class of orbits in the Earth-Moon (E-M) field is discussed
based on a sequence of illustrations. The class is defined by
the common starting point of all orbits at the normalized coordin-
ate Xg = 1.00 on the rotating Xp-axis and by the orthogonality to
this axis of the initial velocities of all its orbits. All motion
is in a plane.

The system model is that of the restricted problem of three
bodies, with circular motion of the masses and the mass parameter
U = 1/80. Earth and Moon are located on the XR—axis at -0.0125
and +0.9875, respectively.

The objective of the study is, first, a graphical display of
the class of orbits in steps small enough to allow interpolation
and, secondly, through the exploit of appropriately composed sur-
vey graphs, the exposition of the class' main phases of develop-
ment as well as their critical transitions.

For comparison a suitably chosen class of Kepler orbits in
rotating coordinates is carried in parallel.

INTRODUCTION

This report is the second in a series of reports intended to
depict classes (or series) of orbits of the E-M field as repre-
sented by the restricted three-body problem, and to compare these
orbits with rotating Kepler orbits.

While the first report of this series (ref. 1) deals with a
class of orbits that start far behind the Moon and thereby can
show a relatively large degree of similarity to Kepler orbits,
the present report differs greatly in this respect.

Its orbits start at the point Xz = 1.00; Yp = 0.00, while the
Moon is located at Xg = 0.9875; YR = 0.00. The close proximity of
the initial point to the Moon's location causes this class not
only to contain a large continuous group of orbits that stay in
the Moon's field, but also to show the Moon's effect in a larger
variety of orbital developments than was the case with the group
of orbits of the earlier report.



Thus, on one hand, there is a much reduced chance to set the
E-M orbit in correspondence to Kepler orbits. On the other hand,
the larger variety of events poses real problems when it comes to
presenting the whole series of orbits on a few survey-graphs as
was done within five graphs for the earlier series. The problem
is met here by providing the reader a choice between a "four-part
synopsis” and a group of "twenty survey graphs." A comparison
between the two testifies to the amount of interesting material
that was deleted in designing the shorter of the two surveys.

Since reference 1 gives an extended introduction into the
representation and classification of Kepler orbits in rotating
coordinates, the present report merely refers to it.

The main body of the report is arranged so its first part pre-
sents the two surveys starting with the shorter one. The twenty
graph survey is accompanied by an extended commentary, and is to
be looked upon as the core of the report. Here the major phases
of the series and their developments, as well as transitions, are
discussed. This is paralleled by a survey of Kepler orbits con-

tained on six graphs.

The remainder of the report presents the large number of in-
dividual orbits, each one graphed to a time length corresponding
to the significance of the development shown. Comments are made
at places where it seems necessary for clarity or emphasis.

In parallel to this, individual Kepler orbits are displayed
to facilitate comparisons where these are possible. At other
places, the Kepler series is continued merely for completeness.
(Kepler orbits and surveys of these are placed at the bottom of

pages.)

The rich contents of the present E-M series is attested to
by the very large number of figures supplied here. The cost of
producing them, however, is greatly reduced from those of refer-
ence 1 by the use of an automatic plotter (Stromberg-Carlson 4020).
Also, only by this means is it possible to draw those long-period
and sometimes rather complicated graphs, which the reader encoun-
ters in this report.

PREPARATORY INFORMATION
Model Data and Method of Computation
The problem under study is the restricted problem of three
bodies, the masses of two of which revolve about each other in

circular paths. The third, massless, body is assumed to move co-
planar with the two masses. The mass ratio between the smaller



mass (Moon "M") and the larger mass (Earth "E") is chosen 1/79,
resulting in the value of 1/80 for the mass parameter u.

In computation as well as when referring to collisions, the
masses are consistently considered strictly point-masses. Not-
withstanding, some of the graphs show the physical size of the
Moon in true relationship to the scale. This serves just to bring
the size of the orbits, shown thereon, into the right perspective.

The set of equations of motion is normalized and regularized.
Normalization reduces certain parameters to unity, such as the
gravitational constant, the sum of the two masses, the distance

between them, and their rate of revolution about each other. It
gives rise to the designation of p to the smaller mass and 1 - u
to the larger one. Normalization is a convenient means 6f reduc-

ing to a unified scale problems that belong to the same type but
have various magnitudes involved, as the Earth-Moon problem, sun-
planet problem, etc., but also the Kepler-problem.

Regularization of the equations of motion is applied to facil-
itate the calculation of the orbital paths through the singulari-
ties that are represented by collisions with either mass. The
method of regularization used is that of Arenstorf (ref. 2).

All orbit computation then is carried through in a stepwise
integration method of series type. For a description of the deck,
see reference 1.

All displays of orbits are given in the rotating (or "synodic")
coordinate system Xi, Yg where the Xp-axis contains the locations
of the two masses, the Earth's being at Xz = -0.0125 and the Moon's
at XR = +0.9875.

Figure 1 depicts the geometry of the system indicating the
relative size and location of Earth and Moon on the rotating Xr-

INITIAL CONDITIONS
FOR E-M- ORBIT SERIES!
Xg * 100 ; Yp= 0.00
Xg * 0.00; Yp VARED
(TO SCALE) \
X
~+ﬂ—+q—m 4|—+ﬁ€%J—+R
095 100
005 MOON
EARTH

INITIAL CONDITIONS AND GEOMETRIC RELATIONS
FOR EARTH-MOON-FIELD ORBITS

Figure 1
axis and giving the initial conditions of the E-M orbits as X =

1.00, Yg = 0.00 and Xg = 0.00 and the axis-orthogonal component
YR varled from the negative near-escape case to the positive one.



KEPLER ORBITS

Since reference 1 furnishes a rather elaborate introduction
to the characteristics of Kepler orbits as seen from a rotating
coordinate system, no information of a general nature is in-
cluded here.

The series of Kepler orbits included here and serving as
comparison to the main-series is chosen so that its initial point
is at Xg = 1.0125, Yr = 0.0, which is the same distance from the
(only) mass as is the initial point of the E-M-series from the
larger mass. Its initial velocity is orthogonal to the Xg-axis.

Normalization applied to the equations of the Kepler prob-
lem brings this problem in comparative scale with the main prob-

lem.

For reasons of unification of procedures, the Kepler orbits
are computed by using the same regularized deck that serves for
the E-M-orbit computation. This means that the Kepler orbits are
derived by stepwise integration. This streamlining of procedures
offers the bonus of easy tests for computational accuracy.

The value of "n" listed with most of the Kepler orbits refers
to the mean-angular motion in respect to an inertial (or "side-
real") system, "n" carrying a negative sign if the mean angular
motion is retrograde; positive if it is direct.

E-M-ORBITS AND SYMMETRY PROPERTIES

Since all orbits start with orthogonal departures from the
Xr-axis, a second orthogonal crossing of this axis insures that
the orbit is periodic in the rotating reference frame. This
follows from the symmetry properties of orbits of the given prob-
lem (see e.g., Szebehely, ref. 3, page 426). For clarity of the
illustration, periodic orbits are frequently depicted to only
half of the periods. There, the marking of the crossing by means
of the "right-angle sign" manifests the orbit's periodic charac-
ter.

Also, because of the symmetry properties by reflection on
the Xg-axis, all orbits can be continued backwards (or "upstream")
of the starting points, reflecting the downstream path with re-
versed velocity after reflection. This is particularly important
in regard to a search for so-called "free return trajectories,"
i.e., orbits that start near Earth, circumnavigate the Moon, and
return to Earth without requiring a thrust impulse. Thus, all
orbits of the present E-M-series that approach the Earth can



indeed be considered to be the return phase of free-return tra-
jectories.

Some E-M-orbits are marked by a "n*-value". This serxrves to
point toward the structural similarity of the orbit to that
Kepler-orbit that is annotated by the same value for its n-value.

APPLICATIONS AND DIMENSIONING

In cases where the information displayed here is used for
determining flight modes of real E-M flights, due consideration
must be given to the many simplifications imposed on the real
world in representing the environment of these flights by the
model of the restricted three-body problem. The most influential
departures from the real world are brought about by ignoring the
true shape of the orbits of the two masses about each other, the
effects of Sun and other planets, and, for the orbital behavior
near the masses, the effects of the body shape and inhomogeniety
(masscons) of the two masses.

Due to these and other model deviations, the flights in a
more realistic model deviate in many details from those repre-
sented here, particularly involving matters of periodicity. What
is retained, however, 1is the general topology and the course of
structural developments from orbit to orbit. Since the exhibit
of these is the primary concern of the survey graphs, especially
the group of twenty (Figures 6-25), reference to these is most
helpful for real flight orbit selection and design.

For this application, the data listed here are to be trans-
formed from normalized to dimensioned data. This is carried out
by multiplying the given data of distances, velocities, and time
periods by the following factors:

for distance, multiply by distance E-M (roughly 400 mega-
meter or 240,000 st. miles)

for velocities, multiply by velocity of the moon (roughly
1.0 km/sec or 2400 st. mph)

for time, multiply by ratio of days in one lunar revolu-
tion about Earth to 2m (roughly 4.3 to give the time in
days) .



EARTH-MOON FIELD ORBITS: SYNOPSIS IN FOUR PARTS

Figures 2-5 represent a very condensed synoptical view of
the series of orbits described in the body of this report. This
synopsis gives a broad-brush representation of the major features
encountered in the run of the series and enables a first orienta-
tion in case some particular phase development is searched for.
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The progression of the series within each figure is indicated
by the heavy arrow pointing in the direction of the increasing
initial velocity component YR, and also by the progress in alpha-
betical labeling of some of the orbits.

The series starts with orbit "A" which represents an orbit
in the neighborhood of the border between escape orbits and orbits
"generally bounded." (The term in quotes is to indicate that the
region of bounded orbits is interspersed with orbits that escape
the system through a close lunar flyby.) The orbits following
orbit "A" in the progression move consistently closer to the Earth.
Orbit "B" is the Earth-collision orbit. It is the only one in the
present class that reaches the Earth in a "simple" flight mode,
i.e., without a prior close lunar flyby.

The collision orbit "B" separates orbits whose sense of mean-
orbital motion about the Earth is retrograde from those of direct
motion about the Earth,.



With orbit "E" of this figure, a particular development is
starting that is signified by the formation of a loop in the
neighborhood of the Moon. The development is carried through on
the following graph.

Figure 3 shows the increasing retention of orbits by the
Moon's gravity leading finally to those orbits that are confined
to the Moon's neighborhood. All orbits that are of the type of
lunar satellite orbits are found between the orbits marked "H"
and "1",
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The third graph of this group, Figure 4, shows the resump-
tion of the motion about the Earth starting with orbit "J" and
progressing to orbit "K". The move away from the Earth which is
noted with these orbits is reversed with the orbits following as
orbit "L" to orbit "M".

In the sequence of orbits "N", "O" and "P" the return to
retrograde mean motion about the Earth can be recognized. All
orbits of this graph pass in front of the Moon.

With the group of orbits on Figure 5 then, the initial wvelo-
cities are large enough that the orbits approach patterns of Kep-
ler orbits again. Apogees show increasing radial distances and
the orbital periods increase as manifested by the forward move-
ment of the perigee loops "T", "U", "V". The last orbit ("W") is
close to the upper boundary of bounded trajectories.

With this orbit, the four-part synopsis is concluded.



TWENTY SURVEY GRAPHS OF THE E-M-SERIES WITH SIX SURVEY GRAPHS
OF THE KEPLER SERIES

The orbits of the twenty survey graphs of the E-M-series are
selected and grouped with the purpose of giving insight into the
development of the various formations encountered in the course
of progression.

Hence, a reader primarily interested in the study of develop-
ments is better served by these survey graphs than by the indivi-
dual orbits of the succeeding chapter. However, the emphasis on
lucidity here excludes the display of orbits to any considerable
length of orbital period. This is why many interesting orbits
will not be recognized in the survey graphs.

There are, on the other hand, those orbits that contribute
border cases between classes of orbits, as between direct and
retrograde orbits or between orbits about the Moon and orbits
about both Earth and Moon. As far as these bordercase orbits are
concerned in the progression of the series, their place and signi-
ficance are given due mention in this chapter.

Concurrently with the twenty survey graphs of the E-M-series,
survey graphs of Kepler orbits are presented. The relatively
smaller number of development phases existing in the Kepler series
allows rendering of the Kepler series in six graphs. The primary
purpose of its inclusion is to provide a ready means of comparing
the two series and thereby accord explanations for various fea-
tures observable in the E-M-series.

For completeness, however, the Kepler series is also carried
through where a semblance of the two series is lacking.

The limits of the Kepler series presentation are the limits
of elliptical motion, i.e., the retrograde and the direct para-
bolic orbit, the sense of motion being understood in reference
to an inertial frame.

The discussion of the E-M series, then, is limited to the
range that can be set in parallel to the range of elliptical Kep-
ler orbits. This extension proves adequate since the semblance of
the two series outside the chosen boundaries is quite good.

Direction of both series progressions is from the lowest
negative initial velocity Yp upwards.

The first graph of the E-M-series (Figure 6) shows the group
of orbits that covers the range from the lower limit of the series
to the orbit that collides with the Earth. The development of
this group is quite regular insofar as distances from the Earth
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decrease consistently until the collision orbit is reached. Indi-
tial velocity of the collision orbit is -1.795, expressed in nor-—
malized units.

A point of significance attached to this collision orbit is
its role as central orbit for a region of flyby orbits that may
serve the practical interests of E-M flights. By virtue of the
orthogonal crossings of the Xg—axis behind the Moon, all flyby
orbits in the current series are return branches of symmetrical
free-return orbits.

The series is continued on Figure 7 with the collision orbit
repeated. This orbit represents the transition from retrograde
to direct mean-angular motion about the Earth. This transition
holds for the sidereal reference frame as well as the synodic.
The development within this group in Figure 7 may be characteri-
zed by the increase in perigee distance and the decrease of the
apogee loops.

Figures 8 and 9, are the first two graphs of the Kepler
series, evidencing a good similarity to their E-M-counterparts.
Some orbits here are labelled for easy reference. Orbit "A" is
the exact parabolic orbit of inertially retrograde direction. The
orbit "C", that collides with the mass, represents in the inertial
frame the rectilinear orbit which after collision bounces back to
its origin. The transition between opposite directions of mean-
orbital motion occurs only once if the orbits are viewed



in the inertial system. For the viewer rotating with the synodic
system, a very interesting return to the retrograde motion unfolds
later in the Kepler series. With the E-M-series, the mean-motion
behavior is more complicated.

Before leaving the graphs of the Kepler orbits, it may be
observed for later reference that the loops caused by the slow-
down of orbital speed around the apogee points are decreasing in
extension with progression of the series.

From here on, comparability between the two series does not
exist for a larger portion of the series.

The two subsequent E-M-series graphs, Figures 10 and 11, in
conjunction with the former E-~M graph, Figure 7, reveal a signi-
ficant motion as far as the perigee points of orbits are con-
cerned. Perigees successively move away, advance toward, and
again move away from the Earth. This oscillating perigee travel
shows up again later in the series.

When advancing toward the Earth, the orbits do not approach
the Earth closer than shown on Figure 10. At this point, it may
be worthwhile to mention that there is no second "simple" Earth
collision case in the E~M-series, but quite a number of orbits
which show Earth collisions on the second or later "run", i.e.,
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after the orbits first had a close lunar flyby.

Returning to the current graphs (Figures 10 and 11), it is
important to notice that the oscillatory perigee behavior is coin-
ciding with the formation and growth of a loop structure in the
field of the Moon. On Figure 11 this loop structure is expanding
into the lower half of the plane.

The significance of this formation is becoming clear on Fig-
ure 12. Within the progression represented on this graph, the
orbits undergo the transition from those that move in the E-M-
field to those that move in the Moon-field only. (The reference
to the "Moon-field" is rather loose here. Its extent is deter-
mined preferably from the orbital motion about the Moon.)

The transition stretches out over a finite velocity range
and produces a number of interesting and significant periodic
orbits that are depicted in the chapter of individual orbits. (See
Figures 180, 184-187, 195 and others.)

On the following three graphs (Figures 13-15), concern is
given to the presentation of the orbits whose motion is confined
to the Moon's field. Essentially the development consists of a
steady shrinking of the orbits to a minimum and a subsequent
expansion. In the course of the contracting phase, the orbits
assume more and more the shapes of ellipses. This is particular-
ly true after the development has passed through the near-

11
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circular orbit shown on Figure 14 as the first one of the group.
In the succeeding chapter where these orbits are shown for longer
time periods, it is demonstrated that the orbits indeed follow
closely Keplerian laws with respect to an inertial system and with
the Moon as the central body. The motion of the synodic coordin-
ate system then makes itself apparent in a rotational progression
of the orbits. This motion does not come to light within the
short periods for which the orbits are shown on Figure 14.

It is relevant to notice on Figure 14 that the orbit of zero
initial velocity is very near to the orbit that collides with the
Moon, this body, of course, considered as a point-mass. This coin-
cidence does not hold if the orbits are started from larger init-
ial XR—values (See reference 1).

Furthermore, attention is drawn to the fact that the lunar
collision orbit represents the dividing orbit between retrograde
and direct angular motion about the Moon. The mean-angular motion
about the Earth, however, does not alter at this point in the
series.

The last orbit on Figure 14 corresponds again to a near-
circular path about the Moon, this time with positive mean-angular
motion. The development of the series past this circular case is
illustrated on Figure 15 which shows that the orbits reach out
increasingly toward the Earth. The last orbit here is a periodic

12
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and somewhat triangular one.

Looking back at the velocity range passed through, during
the phase of the lunar satellite orbits, one recognizes that from
Figure 13 to Figure 15, nearly two units of the normalized velo-
city coordinate are involved which is approximately half of the
full velocity range covered in the series.

What follows on Figure 16 is a short and tenuous phase of
transition between the lunar satellite orbits and the orbits in
the general E-M field. The exact borderline is manifested in an
orbit that lies quite close to the orbit numbered "4" and corres-
ponds to an asymptotic periodic orbit about the cis-lunar equili-
brium point.

The three subsequent survey graphs (Figures 17-19) are best
studied as a unit since together they reveal a second occurrence
of the vacillatory perigee behavior observed before on Figures 7,
10, and 11. Here again the orbits stay away from the Earth by a
finite minimum distance. Also, the development phase is again
connected with a special loop formation near the Moon. The trans-
ition that is foreboded by the loop formation here is the change
from the direct mean-angular motion about the Earth to the retro-
grade direction.

13
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This transition is taking place within the phase displayed
on Figure 20. The threshold orbit is a periodic orbit about the
Moon which is characterized by the fact that it exhibits two big
"ear lobes" leading and trailing the Moon. (For the threshold
orbit, see Figure 310 in the succeeding chapter!)

On Figure 21, a consistent group of orbits of retrograde
motion about the Earth is displayed.

At this point in the progression we might resume the refer-
ence to Kepler orbits and show the continuation of the progression
interrupted with Figure 9. This point is an opportune one, since
the Kepler series also undergoes a change in the direction of the
mean angular motion. This can be studied on Figures 22 and 23.

The continuity of the first orbit on Figure 22, i.e., orbit
"F" with the group of Kepler orbits on Figure 9, is well recogniz-
able. The development from here on involves orbits with loops
that decrease in size and succeed each other in shorter intervals.

An enlarged view of what follows in the serial progression
is given on the next graph (Figure 23). Orbit "I" is the last
example selected of the group of orbits with direct mean motion
relative to the synodic coordinate system. Orbit "K" is an orbit
with retrograde mean motion. In between is the unique orbit "J"
which is stationary in the synodic system and periodic with its

14
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period 21 eqgual to that of the synodic system relative to the
sidereal one. This orbit is the limit between forward and retro-
grade mean motion.

The evolution of the Kepler orbits shortly after passage to
the retrograde direction is pointed out by the three orbit ex-
amples "K", "L", and "M" on Figure 23. Distances between success-
ive loops increase again. On the other hand, the shrinkage of
the loops continues. This latter process is completed with the
arrival of the orbit labeled "L", which is a cusping orbit. Be-
tween this orbit and orbit "M" of this figure, all secondary
oscillations fade away. Orbit "M" is an orbit of circular motion
about the mass, the second one of the Kepler series. With respect
to an inertial coordinate system, this circular orbit is of posi-
tive mean angular motion.

The reader is referred back now to the E-M-series which is
continued in Figures 24 and 25. The process that unfolds within
the progression of orbits on these two figures is that of further
extrication of the orbits from the lunar attraction. With the
last orbit on Figure 25 the process is completed.

What is not shown here, is a short-lived return of the orbits
to direct mean motion about the Earth. This phase and its two
periodic bordering orbits may be studied in the next chapter on
Figures 319 through 328,
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The succeeding orbit group (on Figure 26) reveals a consis-
tent progress in a fashion that is expected. The increasing
radial extension implies the growing apogee radius, and the success-
ively later appearing perigee loops point toward the increasing

orbit period.
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The group of orbits on Figure 27 may be looked upon rather
as an interlude than a typical step in the progression. There is
a minute velocity progression connected with the total group.
Here, the orbits are again "caught" by the Moon and their course
after flyby is deflected to generate the pattern in the Earth's
field as demonstrated on this figure.

On Figure 28, the consistent pattern of growth started on
Figure 26 is resumed. The development "in the large" from here
on is rather predictable, though specific "interludes" of the
nature shown on Figure 27 are interspersed.

The expanding pattern of spirals is exemplified by a number
of orbits on the last graph of the E-M-series. (Figure 29) The
last of these orbits is in the neighborhood of an escape orbit.

Figures 30 and 31 conclude the series of Kepler orbits. The
group on Figure 30 starts out with the circular orbit "N" which
is identical to orbit "M" on Figure 23. Orbits beyond the circu-
lar one in a sense reverse the pattern sequence that was followed
in approaching the circular, since now orbits are again building-
up the "secondary" formations as: indentations, cusp, and then
increasing loops. Also, the angular spacing of the loops, i.e.,
of perigee occurrences, increases with the series progression as
noticeable on the sequence labelled "O" to "S".
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By virtue of this behavior, the trend of patterns of the
Kepler series is toward growing semblance to those of the E-M-

Comparability — at least as far as the earlier parts of

the orbits are concerned — between the two series is revealing
itself well in the last graph of each series (Figures 31 and 29).

The orbits that terminate the E-M-series

(on Figure 29) were

selected to demonstrate a behavior similar to the last one of the

Kepler series

(Figure 31), which is, in fact, the inertially-

positive branch of the parabolic orbit.
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PRESENTATION OF INDIVIDUAL ORBITS OF THE
E-M-SERIES AND THE KEPLER SERIES

The density of sequencing the orbits of the two series in
this chapter is, in general, sufficient to let the developments
of orbital structures be recognized without difficulty.

Comments to the figures, therefore, are made only at places

where either the orbital behavior seems to require clarification
or the significance of the orbital event calls for emphasis.
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The development on Figures 51 to 59 reappears several times
in the progression, modified or reversed. The essential features
are: approach to the Moon as shown in the dashed orbital portion
of Figure 51 with deflection of the downstream path toward the
Earth; periodic orbits in Figures 51 and 52, the half-period
marked by the orthogonal crossings of the Xiy-axis; development of
Earth collision shown on Figure 54, with two neighboring close
Earth-flybys in opposing directions (Figures 53 and 55), develop-
ment of collision with the Moon, occurring on Figure 57 with close
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neighboring orbits circumnavigating the Moon in opposite direc-
tions (Figures 56 and 58). Figure 59 shows the same orbit condi-
tions as Figure 58, but the period of the orbit is extended to

20 units compared to about 6 units on the former orbit. (The his-
tory of the initial movement is blotted out here.) Figure 59
shows the effect of the close lunar flyby. The development, en-
countered here the first time, is illustrated on Figures 76
through 84 in its clearest form.

24



EARTH-MOON FIELD ORBITS

e

Pl

%
/
\
AN

E.M.ORBIT; PERIODIC
YR=-2.4322 ; Pr2=1130

Figure 60

YR

|

XR

E M.ORBIT; PERIODIC
Yg=-2.4187 ; P/2=5.576

Figure 63

Ne -

R

3

S~ |

E M ORBIT; PERIODIC
YR=-2.430I 1 P/2=6.106

Figure 61

E.M. ORBIT; PERIODIC
Yg=-2.41203; P/2=10.16

Figure 64

A P

E.M.ORBIT; PERIODIC
Yp=-24232, P/2:10.15

Figure 62

E.M. ORBIT; COLLISION WITH MOON
YR=-2.4161; Teo =4 771

Figure 65

25



N

26

EARTH-MOON FIELD ORBITS

E.M ORBIT
Yr =-2.41156

Figure 66

E M. ORBIT
Yr=-241154

Figure 67

s

E.M ORBIT

Yp=-2.411525

KEPLER ORBITS

KEPLER ORBIT, n=-3/4
YR=-20848; P/2=12 57

Figure 69

-I_J

7

KEPLER ORBIT;, n=-4/5
YR=-20677, P/2=157I

Figure 70

YR
L~\\

L

~_1

R

Figure 68




E.M.ORBIT

r

EARTH-MOON FIELD ORBITS

YR *-2.41150

Figure 71

Fp

E.M. ORBIT ; PERIODIC
YR=-2.41136;, P/2x 18I

Comments to Figures 71 to 73
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Figure 72

The smaller of the three loops of the orbit on Figure 71

YR

KEPLER ORBITS
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Yg*-2.006%; P/2+1.585

Figure 73

YR

KEPLER ORBIT; n=-|
Yr*-2000I ; P/2=3.142

Figure 74

expands with progression of the series and all three loops then
collapse into a single loop, which is depicted on Figure 72.

This is the only figure in the E-M-series that can be set oppo-
site to the (inertially negative) circular orbit of the Kepler
series (Figure 73).
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Figure 80

in-

volving collisions with Earth and Moon within a close interval

of initial conditions is rendered in its clearest form.
that the orbit of collision with the Moon (Figure 81) is repeated
with much longer “time period on Figure 82.

ness.
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Observe

While this orbit is

not investigated to determine whether it is of escaping type or
bounded, the orbit on Figure 84 is included to show the bounded-
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Comments to Figures 88 to 99

Some of these orbits are shown with half period as well as
full period to aid the perception of structural similarity of
E-M-orbits with the corresponding Kepler orbits.
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Comments to Figures 93 to 99

Notice that both Figures 95 and 99 show orbits of the struc-

ture of n*

-5/3, corresponding to the structure of the Kepler

orbit of commensurability n = -5/3 as depicted on Figure 96. The

sequence of these E-M-orbits with the E-M-orbit of n*

-2/1 on

Figure 93 is reversed to that of the corresponding Kepler orbits

on Figures 96 and 97.
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Figure 109 is the case of the orbit colliding with the Earth
(this assumed to be a point-mass). After five collisions or near-
collisions, the orbit returns to circumnavigate the Moon (dashed
curve). The sequence is indicated by the numbers on the loops.

Since lunar circumnavigation does not happen with orthogonal
crossing of the Xr-axis, the collision case is not shown to be
periodic. The best approach to an orthogonal crossing behind the
Moon is obtained with the orbit of Figure 108. On the other hand,
a collision with the Moon is encountered with the orbit of Fig-

ure 104.
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Comments to Figures 146 to 148

Attention may be directed to the fact that from here on, for
a large portion of the series to come, the "breakouts" of the
orbits into outside regions materialize through the neck that is
formed by the Jacobian zero-velocity curves in the neighborhood

of the Moon.
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Comments to Figures 180 and 184

The relatively broad transition area from unconfined orbits
toward orbits confined to the Moon's field contains a number of

isolated periodic orbits of interesting structure.

with the orbits on Figure 180 and 184,
others on the following pages.

These start

The reader will recognize
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Comments to Figures 201 to 206

The orbit on Figure 201, shown again in Figure 202 with time
extended to T = 20.0, is capable of either escaping or reaching
large distances from the masses. With the next four orbits plotted,
however, the transition to orbits bounded in the Moon field is
realized. The last step toward this is made by the alignment of
all loops of the orbit into mean-motion about the Moon in the
direct sense of revolution, which is illustrated on Figures 203
to 206. The lunar flyby between the loops numbered "1" and "2"
is retrograde on Figure 203 and direct on Figure 206, while Fig-
ure 204 and Figure 205 demonstrate the collision case. From here
on, the loops form increasingly regular patterns, as shown on the
succeeding E-M-graphs.
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Comments to Figure 216
Though the orbit calculation is done with the assumption of
the masses being point-masses, the Moon's physical extension is
indicated on several of the subsequent figures to convey a feel
of the size of the orbits involved.
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Comments to Figures 219, 238 and 223

While the Kepler series has only one orbit of the single-
loop type about the point (1.0; 0.0), i.e., that reproduced on
Figure 223, the E-M-series produces two single-loop type (near-
circular) orbits about the Moon. These are shown on Figures 219
and 238.
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Comments to Figures 251, 253, 255, and 260

This region of transition from orbits bounded in the Moon's
field to general orbits is producing the triangle-shaped periodic
orbits of one or more loops as represented on Figures 251, 253,
255, and 260. The last one shows the same number of loops as the
first one.
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Comments to Figures 266,

Figure 266, which shows the same orbit as Figure 265, is re-
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and 268

peated for the half period in order to have the sequence of 266,

267,

1/ Nko X

268 demonstrate the argument for the existence of an asympto-

tic periodic orbit about the cis~lunar libration point. The ortho-
gonal crossing of the Xp-axis is encountered with the second cut

of this axis on the first of the three orbits (Figure 266);

with

the third cut of the Xr-axis on the second orbit (Figure 267);
while on Figure 268 the orthogonal crossing is found with the
The velocity differential between the

fourth cut of the Xp-axis.
last two orbits is beyond the digits listed here.

Arguments involving the magnitude of the angles of crossings
past the orthogonal crossing on Figure 268 can be made in support
of the continuation of the sequence of the three orbits toward the
asymptotic periodic one, though no proof of this can be given by

the methods of experimental astrodynamics.
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Comments to Figures 281, 289 and 293

The orbits on Figure 281, 289 and 293 are all examples of
"simple" orbits that go around both Earth and Moon.
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Comments to Figure 310

This orbit separates the orbits of direct motion about Earth
from those of retrograde motion.
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Comments to Figures 319 and 328

With the orbit of Figure 319, the direction of motion about
the Earth is returned to the positive one which, however, is
maintained for a short step in the progression only. The reassump-
tion of the retrograde motion occurs after passing the periodic
orbit about the translunar equilibrium point depicted on Figure

328.
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